книги он-лайн ядерные испытания ссср - читайте !

Sherp

http://www.iss.niiit.ru/main.htm
Федеральное государственное унитарное предприятие «Институт стратегической стабильности» Федерального агентства по атомной энергии (ФААЭ) Российской Федерации образовано в январе 2000 года .


ЯДЕРНЫЕ ИСПЫТАНИЯ СССР

http://www.iss.niiit.ru/sssr1/index.html
том I
Цели. Общие характеристики.
Организация ядерных испытаний. Первые ядерные испытания

http://www.iss.niiit.ru/sssr2/index.html
том II
Технологии ядерных испытаний СССР. Воздействие на окружающую среду. Меры по обеспечению безопасности. Ядерные полигоны и площадки.

http://www.iss.niiit.ru/sssr3/index.html
том III
Ядерное оружие.
Военно-политические аспекты.
===

http://www.iss.niiit.ru/ksenia/YI_t1/index.htm
Книга 1. Ядерные испытания в Арктике
(научно-публицистическая монография в двух томах)
Том I. Арктический ядерный полигон

http://www.iss.niiit.ru/ksenia/YI_t2/zagl.htm
Том II. Арктический ядерный полигон

ПМ

А вы уже прочитали? Что там самое интересное, если есть?

Sherp

По Новой Земле просмотрел по диагонали,

когда там работали,
как раз не далеко от северного полигона.
Вот немного фоток оттуда лежит в этой теме

http://guns.allzip.org/topic/141/307428.html

x32

ogromnoe spasibo za ssilku!

uge let 5 hotel pro4itat' etu knigu!

Sherp

Боитесь, что и вам в Норвегию надуло?

это вполне возможно,
так как взрывы старались проводить при чистом небе и сильном ветре 😀

x32

нет не боюсь, просто я родился в россии в 15 км от двух ядерных взрывов))

в норвегию, где я второй год, кстати, живу, точно надуло. и точно известно когда, откуда и где примерно это выпало

а вообще, я просто книжки люблю читать, разные 😊

major

Та кто тогда не взрывал... вон Франция в Тихом океане атоллы свои подрывала... и ничего! Никто даже слюни по этому поводу не пускал. Все обкакались когда Чернобыль бахнул ибо поняли на нашем примере как это хреново когда в середине страны есть зона заражения.

x32

а вот вы книжки эти почитайте. сколько суммрно мегатон СССР взорвал? 😊

подскажу, больше всех в мире, возможно, даже вместе взятых. да и в мирных целях кроме СССР никто больше не взрывал.

Sherp

x32
нет не боюсь, просто я родился в россии в 15 км от двух ядерных взрывов))

Апатиты\Кировск ?

Sensemann

x32
нет не боюсь, просто я родился в россии в 15 км от двух ядерных взрывов))

в норвегию, где я второй год, кстати, живу, точно надуло. и точно известно когда, откуда и где примерно это выпало

а вообще, я просто книжки люблю читать, разные 😊

Осадки выпали? И какую территорию покрыло? Какие последствия для природы и человека, если в тех районах кто-то проживал (густо населены в первую очередь юг и запад, если не ошибаюсь)?

x32

Sherp
Апатиты\Кировск ?

да, объекты днепр-1 и днепр-2 😊

major

x32
а вот вы книжки эти почитайте. сколько суммрно мегатон СССР взорвал? 😊

подскажу, больше всех в мире, возможно, даже вместе взятых. да и в мирных целях кроме СССР никто больше не взрывал.

Кстати я читал где то что Степанокерт и Спитак были результатом глубинного взрыва ядерного заряда в районе разлома... пробовали "тектаническое оружие"... допробовались!

Sherp

Sensemann
Осадки выпали? И какую территорию покрыло? Какие последствия для природы и человека, если в тех районах кто-то проживал (густо населены в первую очередь юг и запад, если не ошибаюсь)?


Там взрывы подземные были в.
Одна из теорий звучала так -
объемное дробление горной массы на апатитовых месторождениях,

ну и заодно военно-физическое прикладное значение 😊

x32

тьфу, я думал он про норвегию спрашивает)))

x32

про днепры. взрывы были действительно подземные.

после взрывов было фонтанирование радиоактивных газов из скважин, истечение из трещин. грунтовыми водами, радионуклиды выносятся в речку малая белая, а оттуда в озеро имандра.

думаю, в книжках это должно быть описано. по крайней мере, я все это когда-то читал в других источниках.

Sensemann

x32
тьфу, я думал он про норвегию спрашивает)))
Про Норвегию и спрашивал - чего куда надуло 😊

Sherp

x32
связано с особенностями почвы - радионуклиды не уходят вглубь. поверхность покрыта мхами которые радостно абсорбируют радионуклиды.
в итоге, все мясо овец/оленей проверяется на радионуклиды. установлены нормы по содержанию, но они достаточно высоки. так, съев 15 обедов, содержащих 250 грамм оленины/баранины (если не изменяет память) вы наберете годовую дозу.

Еще одна фишка Норвегии природный фон 400 микрорентген в час. такой фон не редкость, а может где и выше есть. Опять же, я особо не интересовался. Про 400 мне на прошлой неделе лектор рассказывал в курсе радиационной безопасности 😊


Это похоже уже из разряда сказок 😊
От двух подземных взрывов...
В Кольских краях НАМНОГО больше грязи от металлургических заводов.

4 кг мяса - годовая доза ?????
Олени поди лысые бегали или рогами ветвистыми аки дуб 300-летний.

На Новой Земле что-то такого не замечал,
где работали, на полигон на рыбалку ездили,
там фон ниже питерской набережной в 3-4 раза 😊

400 мкР\ч - это уже фон НИКАК не природный, это уже очень даже много !!!
Может быть обусловлен как техногенными так и природными причинами,
например повышенное содержание (это уже аномальное !!!) урана, тория,
радоновые источники, углеродистые породы, опять же с ураном.

Переспросите, пожалуйста, лектора,
что он все-таки имел ввиду?

Там величин и доз разнообразных дофига.
Бэры, Кюри, Зиверты, рентгены...
и по ним разное меряют

x32

Sherp
Это похоже уже из разряда сказок 😊
От двух подземных взрывов...

да не, это в целом от всех ядерных взрывов и аварии на ЧАЭС. по крайней мере, я именно об этом писал. вы уж если взялись цитировать мой удаленный пост, то цитировали бы его полностью, а не только понравившуюся вам часть 😛

поэтому и пост удалил, когда понял, что он спрашивает только про днепры))

x32

Sherp
Переспросите, пожалуйста, лектора,
что он все-таки имел ввиду?
Там величин и доз разнообразных дофига.
Бэры, Кюри, Зиверты, рентгены...
и по ним разное меряют

как я его переспрошу, он лекцию прочитал и улетел. величину фона он приводил в зивертах, я вам в рентгены перевел, т.к. они в раше больше в ходу 😊

ну, а так, да урана много,

отсюда, кстати и радоновые источники "берутся"))

400 не так и много, в тех же Хибинах, в штольнях, есть места где под 250 природный фон. Если интересно, поинтересуйтесь значениями природного фона в ловозерских рудниках.

Sherp

x32

400 не так и много, в тех же Хибинах, в штольнях, есть места где под 250 природный фон. Если интересно, поинтересуйтесь значениями природного фона в ловозерских рудниках.

Ха!
Ну так это уже не ФОН,
а аномальные значения.

Щелочные породы, которыми сложены Хибинский и Ловозерский массивы,
несут повышенные содержания радиоактивных элементов.
Это их особенность от природы.

Нормальный же показатель - это 20-30-40 мкР\ч

У нас южнее Питера в горючих сланцах повышенное содержание
урана и, следовательно, радон прет.
Даже были идеи использовать как руду на уран 😊
Дык, в Саблинских пещерах (катакомбах),
на сутки где-то набирается недельная-двухнедельная доза.

====

Если не секрет,
на кого учитесь?


Sensemann

На счет радиоционного фона - нашел одну статью в которой сказано следующее
"Но есть участки суши (в том числе и курорты) с постоянным проживанием населения, где уровень "земной" радиации в 600-800 раз выше среднего. Отдельные группы людей получают в год более 17 мЗв только от внешнего облучения "земной" радиацией, что в 50 раз больше средней годовой дозы внешнего облучения; часто находятся (временно проживают) в зонах, где уровень радиации достигает 175 мЗв/год (227 мкР/час) и т. д."
http://nuclearno.ru/text.asp?6544
Там же пишут, что над уровнем моря, на высоте 12 км космическое облучение может достигать 500 мкР\ч.
ИМХО, 400 мкР\ч действительно многовато для Норвегии. Может быть, 40?

x32

Sherp
Если не секрет,
на кого учитесь?

сейчас второе образование получаю - молекулярный биолог

x32

Sherp
Ха!
Ну так это уже не ФОН,
а аномальные значения.

позволю себе не согласиться, все то, что не является результатом деятельности человека - природное 😛

для той местности - 400 микрорентген именно природный фон. т.к. источником его являются элементы входящие в состав горных пород слагающих тот район.

на том месте, кстати, была небольшая деревенька, что-то типа 10 домов где жители почему-то умирали от рака особенно часто. когда там произвели замеры, деревню перенесли.

x32

Sensemann
ИМХО, 400 мкР\ч действительно многовато для Норвегии. Может быть, 40?

я же писал, что не везде, а кое где 😊

Sherp

x32

позволю себе не согласиться, все то, что не является результатом деятельности человека - природное 😛

Так точно,
но есть аномалии антропогенные,
а есть природные 😊

Вот Вам пример - любое месторождение металлических полезных ископаемых 😊

Фоновое содержание (кларк) меди в породах 5-40 (до 80) грамм на тонну,
все что выше - это уже аномально повышенные содержания.
Золото - фоновое 0,005 грамма на тонну, все остальное повыше - аномальное.
У нас на одном из участков в Читинской области
фон по золоту 0,01 г\т, а аномальное до 30 г\т.

Это же все природное 😊
===

Как раз на "ловле" вот этих самых аномалий, в том числе и радиоактивных элементов и основаны геохимические и геофизические поиски месторождений 😊

Sherp

x32

я же писал, что не везде, а кое где 😊

Ага !!! 😊,
так и запишем - локальная геохимическая аномалия радиоактивных элементов 😊


x32

в общем, господа. такая мулька. я нашел вам статью
называется -

"Radioactive fallout in Norway from atmospheric nuclear weapons tests" - Journal of Environmental Radioactivity. Volume 60, Issues 1-2, 2002, Pages 189-208.

аффтар - "Tone D. Bergan"

статья, на английском. в принципе, по приведенной выше информации вы самиможете найти ее. однако, если у вас нет доступа к статьям с сайта http://www.sciencedirect.com/

я могу завтра вечером разместить статью здесь в теме, если это кому-нибудь действительно нужно.

что же касается фоновых доз на территории норвегии, я пытаюсь найти подходящий материал, но в 4 ночи башка у меня плохо варит 😊
если тема не заглохнет, в будни постараюсь чтонить вывесить.

Sherp

x32
в общем, господа. такая мулька. я нашел вам статью
называется -

"Radioactive fallout in Norway from atmospheric nuclear weapons tests" - Journal of Environmental Radioactivity. Volume 60, Issues 1-2, 2002, Pages 189-208.

аффтар - "Tone D. Bergan"

статья, на английском. в принципе, по приведенной выше информации вы самиможете найти ее. однако, если у вас нет доступа к статьям с сайта http://www.sciencedirect.com/

я могу завтра вечером разместить статью здесь в теме, если это кому-нибудь действительно нужно.

что же касается фоновых доз на территории норвегии, я пытаюсь найти подходящий материал, но в 4 ночи башка у меня плохо варит 😊
если тема не заглохнет, в будни постараюсь чтонить вывесить.

Давай-давай,
СайнсДирект, платный, так только абстракт посмотреть можно будет

x32

Radioactive fallout in Norway from atmospheric nuclear weapons tests

Abstract

Historical data on radioactivity in air and precipitation samples have been collected and analysed from study sites in Norway. The purpose of the study was to investigate the correlation between air concentration, precipitation and deposition, and identify areas with high deposition. Areas with high precipitation have been compared with monitoring stations in other countries. The base line data contain measurements of total beta in air and precipitation on a daily basis for the period 1956-1982. Radioactive fallout correlated strongly with annual precipitation which varies from 280 to 4200 mm per year in Norway. The deposition of 137Cs was calculated to be 3.23+1.20 kBq/m2 per 1000 mm precipitation for the period 1955-1975. Also, the relationship between total beta and 137Cs has been investigated, in order to estimate the age of fallout. The age of fallout in Norway ranges from 3 to 9 months during the test periods, which is considerably shorter than the global average, where the mean residence time for debris in the lower stratosphere is estimated to be 1.3 years. There is no evidence of local fallout from tests on Novaya Zemlya reaching Norwegian areas.

1. Introduction

Norway received considerable radioactive fallout from the atmospheric nuclear weapons tests in the 1950s and early 1960s (Storebш, 1958, Hvinden & Lillegraven, 1961b). This was due to several factors including its geographical location (e.g., the rapid depletion of radionuclides in the polar stratosphere in 1959 following the 1958 Soviet tests on Novaya Zemlya) and high precipitation in coastal areas.

Since the first nuclear bomb was detonated in 1945, intensive testing activity occurred in the periods 1952-1954, 1957-1958 and 1961-1962. A moratorium was effective in 1959, and largely observed in 1960 as well. Most countries signed a partial test-ban treaty, restricting nuclear tests in space, the atmosphere or under water, effective from 1963, but the last atmospheric explosion was performed as late as October 1980 by China.

UNSCEAR (2000) has recently re-evaluated the exposure of the public from atmospheric testing of nuclear weapons, as new information has become available on the numbers and yields of nuclear tests. The improved estimates of the production of each radionuclide in individual tests has led to a better agreement between the global atmospheric transport model (610 PBq of deposited 90Sr) and the results of 90Sr deposition from global monitoring networks (604 PBq).

As of January 1999 there have been 2532 nuclear detonations all over the world (Carter, 1979; Norris & Arkin, 1996; UNSCEAR, 2000) ( Table 1). Different sources report different numbers, as the number of detonations depends on the definition of a detonation, as well as access to restricted information. Also, the number of so-called "peaceful" detonations is somewhat uncertain (Matuschchenko et al., 1998). According to UNSCEAR, the official number of atmospheric tests has increased from 522 to 543 (including 39 "safety tests"-no nuclear yield but with possible local plutonium contamination). The total yield is estimated to have been 440 Mt, 189 Mt of which was fission yield. Deposited fission yield is estimated to have been 160 Mt (as opposed to the previous estimate of 189 Mt). The most intensive test period was from September 1961 to December 1962, where 57% of the total detonation power was detonated. The largest test, 58 Mt by USSR in 1961 is corrected to a fission yield of only 3% and a fusion yield of 97%. About 80% of the radioactivity was later deposited as global fallout (Eisenbud & Gesell, 1997), the remaining 20% as either local or regional fallout.

Table 1. All known nuclear detonations up to 1999 (UNSCEAR, 2000; Norris & Arkin, 1996; Matuschchenko et al., 1998). "Peaceful" detonations are detonations with a civilian purpose; mining, oil exploration, construction work, etc.


The atmospheric testing period can be divided into three phases. In the early phase, the explosions were comparatively small so that the nuclear debris was confined zonally, within the troposphere and roughly to the latitude of the explosion sites. The stratosphere was penetrated for the first time by a thermonuclear device exploded by the USA in 1952 (Peirson, 1971). The first global fallout phase covering the period 1952-1958, consisted of moderate-sized explosions, and much of the debris was confined within the lower stratosphere. In this phase, there was a total of 80 Mt fission yield, producing approx. 310 PBq of 90Sr (using a production estimate of 3.9 PBq/Mt, UNSCEAR, 2000). It is estimated that 35-40% of the yield was deposited in the vicinity of the explosion sites ( Eisenbud & Gesell, 1997). Phase two started after a temporary halt in the atmospheric testing, and covers the period 1961-1962. The period is dominated by larger explosions and the insertion of debris higher into the stratosphere. In this period, there was a total of 90 Mt fission yield, producing approx. 350 PBq of 90Sr. Following this, came a peak in deposition rate of 90Sr during 1963, with a steady fall until 1967. The third phase of nuclear weapons testing (1967-1980) started with a period of occasional explosions, producing a few Mt each year and in total 18 Mt resulting in approx. 70 PBq of 90Sr.

About 85% of the total fallout was deposited in the period 1950-1965.
The British atomic energy research establishment(AERE) and the US Naval Research Laboratory started, systematically, monitoring of the atmosphere for fission products in 1955 and 1957, respectively (Monetti, 1996). Tromsø (69.40′N) and Bodø (67.17′N) were included as monitoring stations in the AERE-network since 1957 for rainwater, and Tromsø for air since 1977. Fig. 1 illustrates the deposition of 137Cs calculated for the 60.-70.N latitude using the UNSCEAR global fallout model, (UNSCEAR, 2000), compared with measurements of deposited 137Cs in Bodø and Tromsø. Estimated deposition in the years 1957-1963 is calculated from actual measurements of 90Sr deposition using a ratio of 1.5 for 137Cs/90Sr.


Fig. 1. Deposition of 137Cs calculated for the 60.-70.N latitude (UNSCEAR 2000), compared with measurements of 137Cs deposition in Bodø (67.17′N) and Tromsø (69.40′N). Deposition of 137Cs for the period 1957-1964 is calculated from measurements of 90Sr deposition using a ratio of 1.5 for 137Cs/90Sr.

Of special interest for Norway, are the nuclear tests conducted on Novaya Zemlya. Out of the 219 atmospheric tests performed in former Soviet Union, Matuschchenko et al. (1998) reports a total of 88 atmospheric, two surface water and three underwater tests on Novaya Zemlya. Among the atmospheric tests the world's largest detonation of 58 Mt occurred in October 1961. There has been speculation as to whether Norway received local fallout from any of the tests performed on Novaya Zemlya, especially in connection with the surface or under water tests in 1955, 1957 and 1961.

Radioactive debris injected into the stratosphere will move slowly down into the troposphere, from where the debris is relatively rapidly removed and deposited on the ground, mainly by precipitation (Eisenbud & Gesell, 1997). There are seasonal and latitudinal variations in the concentration of debris in ground-level air and the rate of deposition ( Davis, Logie, Robinson, & Heathington, 1960).

These variations can mostly be explained by spatial and temporal differences in precipitation by a simplified fallout model, where the removal of debris from the troposphere is proportional to precipitation and tropospheric concentration ( Hvinden, Lillegraven, & Lillesæter, 1965). The correlations may appear only in average values over reasonably wide areas and long periods. Also, the precipitation values from a limited group of monitoring stations are not fully representative of the washout history of the measured air ( Hvinden et al, 1965).

A peak in late spring and a minimum in winter have characterised the temporal distribution of the fallout during a typical year. The spring peak can be explained by an enhanced transport from the stratosphere, into which the main component of the debris from atmospheric nuclear tests is injected, down through the tropopause.

Dust injected into the lower polar stratosphere by Russian thermonuclear explosions had a mean residence time of less than 6 months, whereas in tropical latitudes the residence time was as long as at 2-3 years in the middle stratosphere and 5-10 years if injected at 100 km or more above ground. In the troposphere, fallout had a mean residence time of 20-40 days (UNSCEAR, 1962). Average residence time of debris in the atmosphere is about 1.3 years. Mean residence time of aerosols in the lower stratosphere ranges from 3 to 12 months in the polar regions, and 8 to 24 months in the equatorial regions.

Bursts that take place high in the atmosphere produce small particles that remain suspended for considerable periods of time. Airburst particles cannot grow to more than 0.3 μm by condensation (Lockhart, Patterson, & Saunders, 1965). In general, the fallout can be divided into three fractions; large particles that deposited from the atmosphere within hours, smaller particles that remained in the troposphere from which they were removed on a time scale of days, and the fraction injected into the stratosphere, from which they were removed on a time scale of months to years.

Prior to 1952, all the nuclear explosions were in the kiloton range, and the atmospheric radioactivity diminished at a rate corresponding to the residence half-life of dust in the lower atmosphere at about 20 days. Tropospheric fallout contains only a small fraction (not more than 5% of the total radioactive yield) of the long-lived radionuclides from bombs in the Mt range, but can be responsible for heavy exposure from short-lived tropospheric debris, notably 131I.

Local fallout in this period accounted for, an average of 80% for land surface explosions, 20% for explosions on the surface of the water and 10% for explosions in the air. The stratospheric inventory was not influenced significantly by the many detonations in the kiloton range since these did not penetrate appreciably into the stratosphere (Eisenbud & Gesell, 1997).

In response to the nuclear tests, Norway quickly established a monitoring system, and from 1956 onwards the fallout situation was being monitored through daily measurements of radioactivity in samples of air, snow and drinking water, monthly measurements of sea water, fish, milk, and foodstuff, and occasionally animal and human tissue. In this study, data on total radioactivity in air and precipitation on a daily basis from 1956 to 1982 have been collated. The main purpose of the study was to investigate geographical differences in radioactive fallout across Norway, and to investigate if e.g. the number of days with precipitation was more important to the total deposited radioactivity than the amount of precipitation (expressed in mm). Also, more accurate data on the radionuclide composition of the fallout (age) and spatial gradients were needed for further work on retrospective dose calculations.

2. Available information

The most extensive monitoring programme was conducted by the Norwegian defence research establishment(FFI) located at Kjeller. FFI monitored radioactivity in air and precipitation at a number of sites across Norway. A total of 11-13 stations were operational in the period 1956-1984 (Fig. 2). After 1984, only four stations continued monitoring. Air was collected through air filters, 2 m above ground, and the capacity of the pump was approx. 400 m3 per 24 h. The filters were changed every 24 h, sent to Kjeller and measured on an end-window Geiger-Müller counter for total beta activity 72 h after collection. This allowed the most short-lived of radionuclides, such as most radon daughters, to disappear. For the Kjeller station, the filters were subsequently ashed and counted for total beta activity again. This gave an indication of the amount of volatile nuclides (such as the 239Np, 103Ru, 133Xe, 131I and 140Ba chains) in the sample (Aarkrog & Lippert, 1967). The filter efficiency for collecting iodine was not determined precisely, but was estimated to be about 30% ( Storebø, 1958).

Fig. 2. Map of air and precipitation radioactivity sampling stations in Norway

At every station, there was also a stainless steel or polyethylene container for collecting snow, rain and/or settling dust. The containers were emptied every 10-14 days, and at Kjeller there was an additional container, which was emptied daily. If there had been no precipitation, the container was flushed with distilled water. The precipitation or flushing water was evaporated, and counted for total beta activity on the same end-window Geiger-Müller counter as the air filters.

Data on total beta fallout (combined dry and wet) was expressed as Bq (originally Ci) per sampling period, and measurement data from laboratory protocols and internal reports have been collated. At the end of every month, the air filters were bulked, and measured by gamma spectrometry for 137Cs on a NaI-detector in the early period of determination, and later a GeLi-detector. The precipitation samples were also bulked and counted for 137Cs. Unfortunately, only 137Cs data for the period 1957-1963 can be found in internal reports.

Precipitation data for all stations are shown in Table 2. The precipitation map of Norway (Fig. 3) demonstrates that there are large differences in annual precipitation, especially along the coast where there are strong gradients within short distances. This may also result in large local variations in deposited radioactivity.
Table 2. Precipitation data for the monitoring stations (Norwegian Meteorological Institute)

Fig. 3. Precipitation map of Norway (source: The Norwegian Meteorological Institute

3. Current analysis
Data from the monitoring stations at Bergen, Gardermoen, (both situated at 60.N), Tromsø (69.N) and Vadsø (70.N) have been chosen as examples of variation in fallout. Bergen is situated at the coast on the western side of the Hardangervidda Mountains, whereas Gardermoen is an inland, lowland site to the east of the Hardangervidda Mountains. Vadsø is situated approximately 800 km to the southwest of the most important test site of the former Soviet Union, Novaya Zemlya.
The amount of particles in air filters and rainwater was not routinely analysed, but Fig. 4 shows autoradiography measurements of selected air filters from 1957 (Storebø, 1958). Most of the radioactivity is bound to small particles (<0.05 μm radius), but in some cases the particles are quite large. This must be kept in mind when comparing global fallout with, for instance, the latter Chernobyl fallout (Aarkrog, 1988).

Fig. 4. Autoradiography measurements of air filters in 1957. The radioactivity is bound to small particles, and the amount of radioactivity is indicated by the size of the point (Hvinden 1957).

To compare fallout in different areas, the definition of a washout ratio, R, is useful. Washout ratios can be expressed as (in function of mass) (Engelmann, R.J., 1971. Scavenging prediction using ratios of concentration in air and precipitation. Journal of Applied Meteorology 10, pp. 493-497.Engelmann, 1971)

where k is activity in fallout expressed as Bq/g water, and χ the activity concentration in air, expressed as Bq/g air. Engelmann (1971) has compared different washout ratios, which vary between 200 and 4000 for different radionuclides, amounts of precipitation, and time periods. Washout ratios decrease with increasing precipitation. Engelmann also found that the highest washout ratios on the American continent occurred in the areas with the highest number of days with precipitation each year (Seattle). The Norwegian data has therefore been analysed both with respect to amount of precipitation (mm) and number of days with precipitation each year. Bradley (1970) compared data on total beta activity in precipitation over Illinois, and found that the fallout was relatively independent of precipitation P (mm), but there was an inverse relation between k (radioactivity concentration in fallout) and P. The relationship between fallout and precipitation in Norway has been investigated by calculating the washout ratio in relation to monthly precipitation at different stations.
The fallout of 137Cs has been compared to total beta fallout. In this work, two methods have been used to determine the age of fallout. Decay curves have previously been determined by FFI, by measuring the same sample for total beta repeatedly during time intervals of 1-200 days. When the decay is rapid, this indicates fresh fallout, whereas if the decay is slower, this indicates a larger proportion of long-lived radionuclides. 250 data sets for air and precipitation samples from 1958 and 1959 have been investigated in this work. In addition, the ratio between 137Cs and other main isotopes in the fallout contributing to total beta, allows an estimate of the time between detonation and deposition to be made. The most dominant radionuclides in fallout, and their relative ratios to fallout of 137Cs are listed in Table 3. Calculating the age this way is a rough method, as the yield of different radioisotopes differ between different detonations, but it will still give an indication of the age of fallout (Bjurman et al., 1990; Asikainen & Blomqvist, 1970; Cambray, Playford, & Lewis, 1978). The age of fallout, t, was calculated based on the ratio between total beta in air (Bq/m3) and 137Cs in air (Bq/m3) and the half-lives for the 11 radionuclides (excluding 137Cs) listed in Table 3, according to Eq. (2):
Table 3. Important isotopes in nuclear fallout, and their ratio to 137Cs (Cambray, Playford, & Lewis, 1978; Teller et al., 1968)

4. Results and discussion

The annual average concentration of total beta and 137Cs in air is shown in Fig. 5. The average is calculated based on data from all 13 Norwegian stations. As can be seen, there is roughly a 1 yr delay from maximum beta concentration in air to maximum 137Cs concentration in air. This is due to the large proportion of short-lived radionuclides in the fallout. Short-lived radionuclides, such as 140Ba, 91Y, 95Zr, 103Ru and 131I, all contributing to the total beta fallout, exhibit maximum deposition rates in 1962. For the more long-lived radionuclides (e.g. 137Cs, 90Sr and 144Ce), the maximum deposition rates are in 1963 (UNSCEAR, 2000).
Fig. 5. Total beta (right axis) and 137Cs (left axis) in air, country average each year during the period 1955-1985.

Fig. 5. Total beta (right axis) and 137Cs (left axis) in air, country average each year during the period 1955-1985.

The composition of dominant nuclides in the fallout (Table 3) has been used to calculate the age of fallout. The age of the fallout increases when there is little or no atmospheric testing activity, as the proportion of the more long-lived 137Cs increases. Fig. 6 shows the ratio between the monthly average of 137Cs and total beta in air filters at Gardermoen. In periods with intense atmospheric testing activity, the ratio is close to zero, and when there were few tests being conducted, the ratio increases. Radioactive material collected at different stations seemed to be of a similar age (Storebø, 1958).

The decay curves obtained for a number (255 samples) of air, precipitation and water samples from 1958 and 1959, all show a half-life of 50-70 days for total beta. Table 4 compares the total beta in air (μBq/m3) with 137Cs in air (μBq/m3) and the calculated age of fallout (in months). In the most intensive testing periods, the average age of fallout is only 3-5 months, and this is consistent with the observed relatively short half-life of samples from 1958 to 1959.

Fig. 6. Ratio between total beta and 137Cs in air filters in the period 1956-1964 at Gardermoen

Table 4. Total beta in air compared with 137Cs in air (annual average for all stations) and estimated age of fallout

Fig. 7 demonstrates that there is a little difference in air concentrations between the different stations. However, following the most intensive testing periods, or when radioactive clouds pass Norwegian territory, the difference is larger.


Fig. 7. 137Cs in ground-level air at all stations in Norway. Average value with S.E. indicated. In general, ground-level air show roughly the same concentration at all stations.


On three occasions, significant traces of radioactivity came in over Norwegian territory. In October 1957, a rapid increase in radioactivity in air was observed, and during 2-3 days considerable fallout was deposited on the west Coast of Norway due to a low-pressure system with heavy rain. The radioactivity originated from the Windscale accident in UK (Hvinden & Lillegraven, 1963). The second occasion was in November 1962, when 1-10 Bq/m3 of total beta were detected in ground level air. The radioactive cloud could be monitored on its passage from south to north on November 7th to 9th, and originated probably from a test on Novaya Zemlya (either October 30th or November 1st, both test in the 200-300 kt range) (Hvinden et al., 1965). In December 1966, a radioactive cloud from the east was first detected in Vadsø, increasing the total beta in air by a factor of 100. This was later traced back to an underground test in Semipalatinsk performed on December 18th 1966. With the exception of these three occasions, the air concentrations are very similar at the different monitoring stations.

The predominant wind direction over Scandinavia is from the west throughout the year, and the annual precipitation at Bergen is about twice that of Gardermoen. Radioactivity in air at Bergen was generally higher than at Gardermoen, mainly because air from the west was washed out during passage over the western side of the mountains.

It is only in periods with peak concentrations that air concentrations at Gardermoen are higher than those at Bergen. The seasonal variations in the air activity ratio may then be connected with the variations in the precipitation ratio and in the wind variability. Table 5 shows the ratio between different stations and the average of all stations, for total beta in air and precipitation, calculated as monthly average of total beta in air (Bq/m3) at that specific station compared with the average for all stations (Bq/m3) and monthly fallout, both dry and wet (Bq/mm) at that specific station compared with the average for all stations (Bq/mm). The ratio is calculated as the average for every month from 1957 to 1982. As the numbers illustrate, the air concentration decreases from south to north, and the stations at the west coast, Bergen and Sola, show significantly higher air concentrations than the average of all stations. The ratio is rather constant, whether considering the periods 1957-1965 or 1957-1982.

Table 5. Ratio between each station and the average of all stations. The ratio is calculated for total beta in air, as monthly average of total beta in air (Bq/m3) at that specific station compared with the average for all stations (Bq/m3) and for total beta in fallout as monthly fallout, both dry and wet (Bq/mm) at that specific station compared with the average for all stations (Bq/mm). The ratio is calculated as the mean value (+95% confidence interval of the average for every month from 1957 to 1982.

Isotope production at Institute of Atomic Energy (IFA), Kjeller started in 1952, and has probably influenced the total beta measured in air and precipitation from the Kjeller monitoring station. The distance between the monitoring stations at Kjeller and Gardermoen is only 20 km, and there is no significant difference in annual precipitation at Kjeller compared to Gardermoen. However, the air filters collected at Kjeller have 1.5 higher total beta activities than at Gardermoen, and also the precipitation samples have higher activities at Kjeller. Also, there are periods with high ratios of volatile nuclides in air, such as February 1961 and March 1966, with more than 100-400 times higher activity in the fresh air filters compared to ashed filters. This indicates that isotope production at Kjeller has contributed to the total beta measurements, and the value of having both "fresh" and ashed air filters from Kjeller might therefore be limited.

Vadsø is strategically located for detecting possible near zone fallout from Novaya Zemlya. There has been some speculation as to whether Norway received local fallout from any of the tests performed on Novaya Zemlya. Unfortunately, sampling at Vadsø has been irregular, and the data set is not as consistent as, for instance, Tromsø and Gardermoen. The air sampling was more regular during intense testing periods on Novaya Zemlya and air filters were changed daily. Any local fallout, originating from tests on Novaya Zemlya, should be evident in these air filters. As can be seen from Table 5 and Fig. 7, no such events are evident, as the S.E. is small for every month in the period of interest, from 1958 to 1962.
One possible effect of rain is to wash out and decontaminate the lower air layers. Important factors are: the upper height of the rain producing layer; the boundaries for the precipitation area; and particle size distribution. Computations by Storebø (1965) show that particles of smaller size than ca. 15 μm radius will not be brought down to rain cloud levels in significant amounts within a reasonable time from an initial height of 10-12 km (Storebø, 1965). For particles larger than this, more than 90% of those present within and beneath the rain cloud will be deposited by 2.5 mm rain, i.e. about 1 h average rainfall. Thus, even a very moderate rainfall (2.5 mm) will remove most particles within and below the cloud. However, the rain cloud must be considered as a system which pumps or processes air.

This is a very different concept from considering the cloud as a box wherein the pollutants are removed at some fractional rate, referred to as the washout coefficient. The latter concept is not useful since sustained precipitation will not occur without a continued supply of moist air with its pollution load. The primary mechanisms of collecting pollutants are nucleation and probably those associated with condensation, since condensation is also the mechanism of collecting water (Engelmann, 1971). This implies that deposited radioactivity will most likely correlate well with mm precipitation.

Measurements at Kjeller (average annual precipitation of 867 mm), show that precipitation accounts for 85% of the fallout deposition, but in areas with little precipitation one might expect the percentage of dry fallout to be greater (Small, 1960). Larger particles were found in precipitation samples compared to air samples. A substantial part of the radioactivity occurred on particles in the size region for which dry collection efficiency is low (<0.05 μm radius).

The ratios between monthly averages of total beta in air (mBq/m2) and monthly fallout (Bq/m2 per mm) for all stations are shown in Fig. 8. Also, the accumulated total beta fallout (not corrected for decay) is compared with total precipitation for the period 1957-1969 (Fig. 9). The data in Fig. 9 are best fitted to a linear regression (R2=0.74), resulting in no dry deposition at all. Even with most of the radioactivity associated with particles with a low dry collection efficiency, an absence of dry deposition is not very likely. If one assumes some dry deposition, the data must be fitted to an exponential curve (R2=0.55), which gives a total dry fallout of 40,000 Bq/m2 (total beta).

Fig. 8. Correlation between total beta in air, monthly average expressed in mBq/m2, and total beta in monthly fallout (both dry and wet) expressed as Bq/m2 per mm precipitation. Data from Bergen, Gardermoen, Tromsø, and Vadsø.

Fig. 9. Correlation between total beta fallout (not decay corrected) and the total precipitation in the period 1957-1969.


The inverse relationship between washout factor and precipitation reported by Bradley (1970) and Engelmann, R.J., 1971. Scavenging prediction using ratios of concentration in air and precipitation.

Journal of Applied Meteorology 10, pp. 493-497.Engelmann (1971) is also observed for most Norwegian monitoring stations. The washout factor for different stations are shown in Table 6. Røros, Gardermoen, Tromsø and Bergen show decreasing washout factors with increasing precipitation. The only station that shows unusual low washout factors is Vadsø. If Vadsø was affected by local fallout from Novaya Zemlya, the washout factor would have been high.
Table 6. Average washout factors (Eq. (1)) with+S.E. calculated for the five stations Bergen, Gardermoen, Tromsø, Vadsø, and Røros

On a global scale, the deposition of 90Sr and 137Cs shows a maximum at the temperate latitudes and a minimum at the poles and equator (UNSCEAR, 1982). Most tests were performed in the Northern Hemisphere, and the mean integrated fallout in the 60-70.N latitude band can be calculated from UNSCEAR (2000) to be 2.7 kBq/m2 for 137Cs and 1.8 kBq/m2 for 90Sr. Although describing the global pattern of deposition, the model does not describe regional differences in detail. When the annual deposition of 137Cs calculated for the 60.-70.N latitude using the UNSCEAR global fallout model is compared with measurements of deposited 137Cs in Bodø and Tromsø (Fig. 1), it becomes evident that the global model does not take into account the relatively rapid deposition of radionuclides in the northern hemisphere originating from the Soviet tests in 1958. The deposited 137Cs in 1958 is also accompanied by high levels of 131I. The UNSCEAR model also significantly underestimates the annual deposition in Norway.

According to the global fallout model, one should in Norway expect a decrease in deposition of long-lived radionuclides from south to north. This conclusion is not valid for the 13 national monitoring stations (from 58.N to 70.N), as the deposition is strongly influenced by precipitation. Looking at Table 5, the trend in fallout (dry+wet) ratio has no south to north decreasing trend. Bergen has significantly higher fallout compared to the average; this is also the station with the highest annual precipitation, whereas both Ålesund and Bodø have more days of rain per year. Fig. 9 also illustrates this, in that when the sum of total beta fallout for the period 1957-1969 is compared with the sum of precipitation for the same period, Bergen stands out as the station with the highest fallout.

Many authors have reported that the rates of deposition of long-lived nuclides in global fallout are correlated with precipitation patterns and rates (Hvinden and Hvinden; Livens, Fowler, & Horrill, 1992; Blagoeva & Zikovsky, 1995; Bradley, 1970). A ratio of 3.7 kBq/m2 of 137Cs per 1000 mm precipitation measured in 1977 has been reported by Cawse and Horril (1986) from direct measurements of deposition in the UK. The AMAP-study, Wright, Howard, Strand, Nylèn, and Sickel (1999) have estimated the cumulative deposition for the period 1955-1985 to 3.69+0.97 kBq/m2 of 137Cs per 1000 mm precipitation. Norwegian soil samples show that the highest depositions occur in areas with high precipitation (Lillegraven & Hvinden, 1982) ( Fig. 10). The deposition, based on the soil samples reported by Lillegraven and Hvinden, is calculated to 3.23+1.20 kBq/m2 of 137Cs per 1000 mm precipitation for soil samples collected after 1966, representing the cumulative deposition from 1955 up to sampling time. This is somewhat lower compared with previous estimates, but within the range of uncertainty.

Fig. 10. Correlation between 137Cs in soil samples and total precipitation in the period 1955-up to sampling time. Soil sample results from Lillegraven, A., & Hvinden, T. (1982). Measurements of cesium-137 in Norwegian soil samples 1960-1979 (in Norwegian with English summary). Norwegian Defence Research Establishment, FFI/Report-82/3004, Kjeller.Lillegraven and Hvinden, 1982

Sutherland (1996) has shown that the relationship between 137Cs deposition and precipitation is not always strong when compared with the influence of regional or small-scale variation. Fig. 10 shows the great variability that can be found in one area. For example, consider the soil samples for the 33,000 mm precipitation data in Fig. 10, which are all collected in a rainy valley on the west coast of Norway (Frøylandsdalen). However, considering the total beta in air and precipitation in the Norwegian data, there generally seems to be a good correlation between monthly precipitation and fallout.


5. Conclusions

Norway did, in most periods, receive more fallout than predicted by the UNSCEAR's global model. Especially in 1958-1959 there is a rapid washout of radioactivity, with higher levels of e.g.137Cs, 90Sr and 131I than calculated by the model. The fallout is correlated to the amount of precipitation and concentration in air, and the deposited radioactivity is proportional to monthly precipitation. There is no decreasing trend in fallout from the south to north of Norway, as the fallout is well correlated to precipitation. The cumulative deposition for 1955-1975, based on soil samples is 3.23+1.20 kBq/m2 of 137Cs per 1000 mm precipitation. This calculated deposition is somewhat lower than previously reported (Wright et al., 1999; Cawse & Horril, 1986), but within the range of uncertainty.

There is no strong evidence that Norway received local fallout from the tests on Novaya Zemlya, as neither Vadsø nor Tromsø monitoring stations show higher air or fallout concentrations than other Norwegian stations. The only possible indication on local fallout is that Vadsø exhibits different washout factors, compared to the other stations. To investigate this question further, more nuclide-specific data (e.g. for 137Cs, 131I and 90Sr) is needed, to date the fallout more correctly and correlate the 137Cs in air and deposition to total beta measurements

x32

вот статья, как и обещал, изучайте, если интересно.

если где напутал с картинками, не пинайте. уж большо грузить их в текст геморно!

Sherp

Спасибо большое!!!
Будем изучать

Может проще было JPG понаделать из PDF-ки ?

x32

не подумал,